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The results of numerical study of mass-transfer processes in quasi-two- and three-dimensional nonideal
dissipative systems are presented. Simulations were performed for different types of model pair potentials of
intergrain interaction that are various combinations of power-law and exponential functions. The calculations
were performed in a wide range of parameters typical for laboratory dusty plasma experiments. It was shown
that the dynamics of grains in liquidlike systems for short observation times is close to the evolution of thermal
oscillations in the crystal lattice.
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I. INTRODUCTION

The problems associated with mass-transfer processes in
dissipative systems of interacting particles are of great inter-
est in various fields of science �plasma physics, the medical
industry, physics and chemistry of polymers, etc.� �1–9�.
Nevertheless, hydrodynamic approaches can successfully de-
scribe these processes only in the case of short-range inter-
actions between particles. The main problem involved in
studies of nonideal systems is associated with the absence of
an analytical theory of liquids. To predict the transport prop-
erties of nonideal systems, various empirical approaches and
computer simulations of the dynamics of the particles with
different models for the potentials of their interaction are
used �1–5�. The simulations of transport processes are com-
monly performed by methods of molecular dynamics, which
are based on solution of reversible equations of motion of the
particles, or Langevin equations taking into account the irre-
versibility of the processes under study.

Diffusion is the basic mass-transfer process, defining the
losses of energy �dissipation� in a system of particles and its
dynamic features �such as the phase state, the conditions of
propagation of waves, and the formation of instabilities�.
When the deviations of the system from statistical equilib-
rium are small, the kinetic coefficients of linear dissipative
processes �constants of diffusion, viscosity, thermal conduc-
tivity, etc.� can be found from Green-Kubo formulas that
were established with the help of the theory of Markovian
stochastic processes under the assumption of a linear reaction
of the statistical system to small perturbations. These formu-
las are important results of the statistical theory of irrevers-
ible processes. According to these formulas, the diffusion
coefficient D can be found from the following relationship:

D = �
0

�

�V�0�V�t��dt/m . �1�

Here �V�0�V�t�� is the velocity autocorrelation function
�VAF� of grains, t is the time, and m is the dimension of the
system. The diffusion coefficient can also be obtained from
the analysis of thermal transfer of the grains through unit
area of the medium:

D = lim
t→�

���l�2�/�2mt� , �2�

where �l=�l�t� is the displacement of an isolated particle
from its initial position during the time t. In both Eqs. �1� and
�2�, the brackets � � denote ensemble and time averaging �av-
eraging for all time intervals with duration t�. As the rela-
tionships �1� and �2� were obtained without any assumptions
on the nature of thermal motion, they are valid for gases as
well as for liquids and solids in the case of small deviations
of the system from its steady state condition. In the general
case of nonideal fluids, analytical solutions of Eqs. �1� and
�2� are unavailable, which makes it impossible to find the
diffusion coefficient. The simple solution D�D0=T / ��frM�,
known as the Einstein relationship, exists only for noninter-
acting �“Brownian”� particles; here M and T are the mass
and the temperature of a grain, respectively, and �fr is the
friction coefficient.

Due to the existing level of experimental physics, it is
necessary to go beyond the bounds of the diffusion approxi-
mation, and modern methods of numerical simulation �based
on the theory of stochastic processes� allow one to do this. A
description within macroscopic kinetics may be insufficient
for the analysis of mass-transfer processes on physically
small time intervals. A study of the mass-transfer processes
for short observation times is especially important for inves-
tigation of fast processes �e.g., the propagation of shock
waves and impulse actions, or progression of the front of a
chemical transformation in condensed matter �5,6��, and also
for the analysis of transport properties of strongly dissipative
media �such as colloidal solutions, plasmas of combustion
products, nuclear-induced high-pressure dusty plasmas
�2,8,9��, where long-term experiments should be carried out
to measure the diffusion coefficients correctly.

II. MASS-TRANSFER PROCESSES IN NONIDEAL MEDIA

Consider the particle motion in a homogeneous dissipa-
tive medium. One can find the displacement of the jth par-
ticle in this medium along one coordinate, xj =xj�t�, under the
action of some potential F and random forces Fran from the
Langevin equation

M
d2xj

dt2 = − M�fr
dxj

dt
+ F + Fran. �3�

In a statistical equilibrium of a system of particles
�M��dxj /dt�2�= �MVx�t�2��T� the mean value of the random
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force is zero, �Fran�t��=0, and its autocorrelation function
�Fran�0�Fran�t��=2V��t� corresponds to the �-correlated
Gaussian process, where ��t� is the delta function, and
V=T�frM �due to the fluctuation-dissipation theorem�. Under
these assumptions Eq. �1� describes a Markovian stochastic
process.

To analyze the dependence of mass transfer on time t, we
introduce the following functions:

DGK�t� = �
0

t

�Vx�0�Vx�t��dt , �4a�

DMSD�t� = ��xj�2�/�2t� , �4b�

where Vx �t�=dxj /dt is the velocity of the jth particle. The
function DGK�t� �4a� is defined using the well-known Green-
Kubo �GK� formulas, and the function DMSD�t� �4b� uses the
information about the mean-square displacement �MSD� of
particles. With small deviations of the system from the equi-
librium state, both functions �DGK�t� and DMSD�t�� as t→�
should tend to the same constant D=limt→�D�t�, which cor-
responds to the standard definition of the diffusion coeffi-
cient.

Neglecting the interparticle interaction �F=0, the case of
Brownian particles�, one can find the VAF, using the formal
solution of Eq. �3� under the assumption �Fran�t�Vx�0��=0
�2�:

�Vx�0�Vx�t�� =
T

M
exp�− �frt� . �5�

Then the mass-transfer evolution function DGK�t�, Eq. �4a�,
may be written as

DGK�t� = D0�1 − exp�− �frt�� . �6a�

To find the mean-square displacement of the jth particle,
one should multiply Eq. �3� by xj. Then, if there is no corre-
lation between the slow particle motion and the “fast” sto-
chastic impact ��Franxj�=0�, the simultaneous solution of
Eqs. �3� and �4b� in a homogeneous medium �M��dxj /dt�2�
�T , ���l�2�=m�xj

2�� can be presented as �5�

DMSD�t�/D0 = 1 − �1 − exp�− �frt��/�frt . �6b�

Thus, for the Brownian case, when t→� and �frt� 1, we
have DGK�t�=DMSD�t�→D0, and on small time intervals
��frt�1� the motion of particles has a ballistic character:
�x2���xj

2�	Tt2 /M and DMSD�t�= �x2� / �2t�� t.
The analytical solution of Eq. �3� may also be obtained

for an ideal crystal under the assumption that the restoring
force F=−M�c

2xj acting on particles in lattice sites can be
described by the single characteristic frequency �s �the case
of a harmonic oscillator�. In this case we will have

M
d2xj

dt2 = − M�fr
dxj

dt
− M�c

2xj + Fran. �7�

After multiplying both parts of this equation by x=xj, rear-
ranging, and averaging, taking into account that �Franx�=0
and M��dx /dt�2�=M�Vx�t�2��T, we will obtain �10�

M
d2�x2�

dt2 = − M�fr
d�x2�

dt
− 2M�c

2�x2� + 2T . �8�

Then the simultaneous solution of Eqs. �8� and �4b� can be
written as

DMSD�t�
D0

=
1 − exp�− �frt/2��cosh��frt	� + sinh��frt	�/
2	��

2
c
2�frt

,

�9�

where 	= �1–8
c
2�1/2 /2, and 
c=�c /�fr. In the case of

�1–8
c
2��0, the 	 value is imaginary: 	= i	�, where

	�= �8
c
2−1�1/2 /2. In this case, sinh�i	��frt�

= i sin�	��frt� , cosh�i	��frt�=cos�	��frt�, and the expression
for DMSD�t� function will include the trigonometric functions
instead of the hyperbolic functions.

To define the VAF �Vx�0�Vx�t����Vx�t0�Vx�t0+���, we
will use the following designations: Vx�t0��V0, Vx�t0+��
�V, X�t0�=x, X�t0+���x+�x. Equation �7� can be pre-
sented as two expressions at two different instants of
time �t= t0 and t= t0+��. Then we can multiply the first of
them by V and the second by V0. The sum of these two
expressions, averaged over the particle ensemble for all
time intervals with the duration t=� �taking into account that
�x�x�=0, �Fran�t0�V�t0+���=�frM�V�t0�V�t0+���, and
�Fran�t0+��V�t0��=0 �2,5��, can be written as

d�V0V�
dt

= − �fr�V0V� − �c
2d�x2�

dt
. �10�

The solution of this equation is

�V0V� =
1

2

d2�x2�
dt2 , �11�

and Eq. �10� may be rewritten as

d2�V0V�
dt2 = − �fr

d�V0V�
dt

− 2�c
2�V0V� . �12�

Thus, in this case of a harmonic oscillator, we will have for
the VAF

�Vx�0�Vx�t�� =
T

M
exp�− �frt/2��cosh��frt	�

− sinh��frt	�/
2	�� , �13�

and the simultaneous solution of Eqs. �13� and �4a� can be
written as

DGK�t�
D0

=
exp�− �frt/2�

	
sinh��frt	� . �14�

When 	 is imaginary, both expressions for the VAF and
DMSD�t� functions �Eqs. �13� and �14�� will include the trigo-
nometric functions instead of the hyperbolic ones �see
above�.

The normalized VAF f�t�=M�Vx�0�Vx�t�� /T and mass-
transfer evolution functions �DGK�t� /D0 , DMSD�t� /D0� for
various values of 
c are presented in Fig. 1, where the time is
given in units of the inverse friction coefficient ��fr

−1�. It is
easy to see that for short observation times a particle in a
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lattice site also has a ballistic character of motion ��x2�
	Tt2 /M , DMSD�t�= �x2� / �2t�� t�. With increasing time
��frt�1� both evolution functions tend to zero, DGK�t�
=DMSD�t�→0, because for the harmonic oscillator the mean-
square displacement ���l�2� is constant: ���l�2�=mT / �M�c

2�.
For liquid media, an exact analytic expression for

�Vx�0�Vx�t��, DGK�t�, and DMSD�t� cannot be obtained.
Nevertheless, we should note some features of the relations
between the mentioned functions, both in the case of Brown-
ian particles �see Eqs. �5� and �6b�� and in the case of the
harmonic oscillator �see Eq. �13��, and which may occur for
liquids:

DGK�t�
d
tDMSD�t��

dt
�

1

2

d�x2�
dt

, �15a�

�Vx�0�Vx�t�� =
d2
tDMSD�t��

dt2 �
1

2

d2�x2�
dt2 . �15b�

The mean-square displacement evolution DMSD�t� was stud-
ied numerically in �10–12� for nonideal systems with a

screened Coulomb pair interaction potential �of Yukawa
type�:

U = �eZ�2exp�− r/
�/r . �16�

Here r is the distance between two particles with a charge
eZ, where e is the electron charge, 
 is the screening length,
�= lp /
, and lr is the mean interparticle distance, which is
equal to the inverse square root from the surface density of
particles for two-dimensional �2D� systems, and it is the in-
verse cubic root of their bulk concentration in three-
dimensional case. As a result of numerical simulation, the
characteristic frequencies for the body-centered cubic �bcc�
lattice, �s=�bcc	2eZ exp�−� /2���1+�+�2 /2� / � lp

3M���1/2,
and for the hexagonal lattice, �s=�h	1.16�bcc, were ob-
tained �10–12�. It was also shown that these frequencies are
responsible for the mean time ta of “settled life” of particles
in liquidlike systems and their values define the evolution of
mass transfer for observation times t� ta	2 /�s. Taking into
account Eqs. �15a� and �15b�, it is easy to assume that the
behavior of the VAF and DGK�t� for the mentioned observa-
tion times in liquidlike Yukawa systems is also close to the
behavior of these functions for harmonic oscillator.

The dynamics of 3D systems of particles with various
types of pair isotropic potentials was numerically investi-
gated in �13�. Those potentials represented different combi-
nations of power-law and exponential functions, commonly
used for simulations of repulsion in the kinetics of interact-
ing particles �5�:

U = Us�b1 exp�− �1r/lp� + b2�lp/r�nexp�− �2r/lp�� . �17�

Here b1�2�, �1�2�= lp /
1�2�, and n are variable parameters, and
Us= �eZ�2 /r is the Coulomb potential. In the context of in-
vestigation of dusty plasma properties the screened Coulomb
potential �16� �b1=1 , b2=0 , �1= lp /
� is of particular inter-
est. But it should be noted that the simple model �16� agrees
with numerical and experimental results in a complex plasma
only for short distances r�
 between two isolated macro-
particles in a plasma �14–17�. With increasing distance, the
effect of the screening weakens, and the asymptotic character
of the potential U for large distances r�
 can follow
a power-law dependence, U�r−2 �16� or U�r−3 �17�; thus,
the parameters of the potentials �17� will be �1= lp /
,
�2=0, n=1,2, and b1�b2, respectively.

It was noticed that the mass-transfer processes and spatial
correlation of macroparticles in these 3D systems are defined
by the ratio of the second derivative U� of the pair potential
U�r� at the point of the mean interparticle distance r= lp to
the grain temperature T, if the following empirical condition
is met �13�:

2� � �U��lp��lp/�U�lp�� � 1. �18�

In this case, the spatial correlation of particles did not depend
on the friction ��fr� and was defined by the value of effective
coupling parameter ��=Mlp

2U� / �2T� in the range between
��
10 and the point of crystallization of the system
���
100�, where for all considered cases formation of the
bcc structure was observed with the characteristic oscillation
frequency of the grains �13�:

FIG. 1. Functions f�t�fr� �a� and DMSD�t�fr� /D0 �b� for �1� bal-
listic mode �f�t�=1, DMSD�t�� t�; �2� Brownian case �Eqs. �5� and
�6b��; and for the harmonic oscillator �Eqs. �13� and �9�� with dif-
ferent 
s: �3� 0.033, �4� 0.38, and �5� 2.
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�c
2 = �bcc

2 � 2�U��lp��/��M� . �19a�

It is natural to expect that the characteristic oscillation
frequency in the hexagonal lattice for the grains, interacting
with the potentials �17�, may be written similarly to the fre-
quency found for quasi-2D Yukawa systems �10,11�:

�c
2 = �h

2 � 2.7�U��lp��/��M� . �19b�

The behavior of the VAFs and of the evolution functions
DMSD�t�, DGK�t� is studied numerically in the next part of
this paper for quasi-2D and 3D nonideal systems with differ-
ent interaction potentials, which obey Eqs. �17� and �18�.

III. PARAMETERS OF NUMERICAL SIMULATION

The simulation was carried out by the Langevin molecular
dynamics method based on the solution of a system of dif-
ferential equations with the stochastic force Fran, which takes
into account processes leading to the established equilibrium
�stationary� temperature T of macroparticles that character-
izes the kinetic energy of their random �thermal� motion. The
simulation technique is detailed in Refs. �10–12,18�. The
considered system of Np motion equations �Np is the number
of grains� included also the forces of pair interparticle inter-
action Fint and external forces Fext:

M
d2l�k

dt2 = �
j

�Fint�l��l=�l�k−l�j�
l�k − l�j

�l�k − l�j�
+ F� ext − M�fr

dl�k

dt
+ F� ran.

�20�

Here Fint�l�=−�U /�l, and l= �l�k− l�j� is the interparticle dis-
tance. To analyze the equilibrium characteristics in systems
of particles interacting with potentials �17�, the motion equa-
tions �20� were solved with various values of the effective
parameters that are responsible for the mass transfer and
phase states in dissipative nonideal systems. These param-
eters were introduced by analogy with the parameters found
in �11–13�, namely, the effective coupling parameter

�� = a1lp
2U��lp�/�2T� �21�

and the scaling parameter


 = ��/�fr where �� = �a2U��lp��1/2�2�M�−1/2. �22�

Nere a1=a2�1 for 3D systems, and a1=1.5, a2=2 for the
quasi-2D case. The calculations were carried out for a uni-
form 3D system and for a quasi-2D system simulating an
extensive dusty layer. The scaling parameter was varied from

	0.04 to 
	3.6 in the range typical for laboratory dusty
plasmas in gas discharges; thus, the values of Z were varied
from 500 to 50 000, the particle mass M was 10−11−10−8 g,
and the lp values were 
100–1000 �m. The �� value was
varied from 10 to 120.

In the 3D case the external forces were absent ��Fext�
�0�, and periodic boundary conditions were used for
all three directions x, y, and z. Most of the calculations
were performed for 125 independent particles in a central
calculation cell that was a cube with the characteristic size
L. The length of the cell L �and the corresponding number

of particles� was chosen in accordance with the condition of
a correct simulation of the system’s dynamics,
L� lp�U�lp�� / 
�U��lp��lp− �U�lp���, which satisfies the require-
ment of strong reduction of the pair potential at the charac-
teristic distance L �18�. So, for example, for the Yukawa
potential this conditions may be presented in the form lp /L
�� �19�. The potential of the interparticle interaction was
cut off at the distance Lcut
4lp, which was defined from the
condition of a weak disturbance of electrical neutrality of the
system: U��Lcut�Lcut

2 � �eZ�2. To prove that the results of the
calculation are independent of the number of particles and
the cutoff distance Lcut, additional test calculations were car-
ried out for 512 independent particles with Lcut=7lp and
��=1.5, 17.5, 25, 49, and 92. The disagreement between the
results of these calculations was within the limits of the nu-
merical error and did not exceed ��1–3�%.

In the quasi-2D case, the simulation was carried out for a
monolayer of grains with periodic boundary conditions in the
directions x and y. In the z direction the gravitational force
Mg, compensated by the linear electrical field Ez=�z
��Fext�� Fext

z =Mg−eZ�z�, was considered. Here � is the
gradient of the electrical field, and Fext

x =Fext
y �0. The number

of independent particles in the central calculated cell was
varied from 256 to 1024; accordingly, the cutoff distance of
the potential was changed from 5lp to 25lp. The value of the
gradient � of the electrical field Ez, confining the layer in the
z direction, was varied from 
10−2 to 
100 V /cm2, and for
the simulated monolayers of grains the � value was in agree-
ment with the criterion of formation of monolayer dust struc-
tures proposed in �20�: eZ��2�i=1

Np U��li� / li. Under this con-
dition we have not detected any considerable dependence of
the particle dynamics on the values of � and Np in our simu-
lations.

IV. RESULTS OF THE NUMERICAL SIMULATION
AND THEIR DISCUSSION

The evolution of mass-transfer processes, obtained in the
numerical experiments for quasi-2D and 3D systems with
various interaction potentials for different values of 
 and ��

is illustrated in Figs. 2–5, where the normalized VAFs
f��frt�=M�V�0�V��frt�� / �mT� and mass-transfer evolution

functions DGK��frt� /D0 and DMSD��frt� /D0 are presented. In
Figs. 2 and 3, the curves 1 are the solutions of the Langevin
equation neglecting the interparticle interaction �see Eqs. �5�,
�6a�, and �6b��. It can be easily seen that, in the presence of
interparticle interactions, the behavior of �V�0�V�t��, DGK�t�,
and DMSD�t� on short observation times ��frt�1� corre-
sponds to the motion typical for Brownian particles. With
time, the functions DMSD�t� and DGK�t� reach their maxima
DMSD

max and DGK
max. However, neither the relative magnitude

DMSD
max /D0, DGK

max /D0 nor the position tmax�fr of these maxima
depends on ��; but they are defined by the value of the
scaling parameter 
 for either the 3D problem or the simu-
lated 2D system. This feature was noticed earlier for the
functions DMSD�t� �10–13�.

It is easy to see that the evolution of the functions
�V�0�V�t��, DMSD�t�, and DGK�t� for systems with different
pair potentials is defined by the particle temperature T, the

VAULINA et al. PHYSICAL REVIEW E 77, 066403 �2008�

066403-4



effective coupling parameter ��, and the scaling parameter 

�see Figs. 2–5� and also that the relation between DMSD�t�
and DGK�t� is in accordance with Eq. �15a� �see Fig. 3�.

With t→�, both the functions DMSD�t� and DGK�t� tend
to the same constant value D which corresponds to the dif-
fusion coefficient. The normalized coefficients D�=D��fr
+���M /T vs the �� parameter for quasi-2D systems with
various pair potentials are shown in Fig. 6. It can be easily
noticed that the D� value for the systems under study is de-
fined by the value of ��. It was observed that the difference
between the diffusion coefficients of weakly dissipative �

�0.3� and weakly dispersive �
�0.25� quasi-2D structures
with �� between 
6 and 
97 is rather small; within the
mentioned range of �� the deviations of the diffusion coef-
ficients from their mean value do not exceed 7%. This dif-
ference increases noticeably with an increase of ���100.
These deviations were observed for quasi-2D Yukawa sys-

tems as well as for 3D systems with different types of pair
potential �10–13�. Note that the obtained functions D�����
have two critical points, one of which is a point of inflection
���
98–108� that, possibly, reflects a phase transition
between the hexatic phase and the liquid. The second criti-
cal point �the point of abrupt change of D� lies near
��
153–165, where D→0, and the system under study is
transforming into a solid with a perfect hexagonal lattice.
Similar behavior of D����� was observed for quasi-2D
Yukawa systems �11�. The mean value of the normalized
diffusion coefficient D� averaged for different values of Z, �,
�fr, and � for quasi-2D systems with the different potentials
is presented in Fig. 7, where the dependence D����� for 3D
structures �12,13� is also shown.

FIG. 2. Functions f�t�fr� �a� and DMSD�t�fr� /D0 �b� for �1�
Brownian case; �2� harmonic oscillator with 
s=1.53. Numerical
results are also shown for quasi-2D problem with 
=0.93 �
s
=1.53� and various ��: �3� 12, �4� 27, and �5� 56; and for different
potentials U: solid lines U /Us=exp�−4r / lp�, circles U /Us
=0.1 exp�−2r / lp�+exp�−4r / lp�, diamonds U /Us=exp�−4r / lp�
+0.05lp /r, and squares U /Us=0.05�lp /r�3.
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FIG. 3. Functions DGK�t�fr� /D0 for �1� Brownian case; �2� har-
monic oscillator with 
s=1.53. Numerical results are also shown for
quasi-2D problem �
=0.93, 
c=1.53� with different ��: �3� 12, �4�
27, and �5� 56. Fine lines DGK /D0 from Eq. �4a�; diamonds
DGK /D0 from Eq. �15a�.
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FIG. 4. Functions DGK�t�fr� /D0 �fine lines, Eq. �4a�� and
DMSD�t�fr� /D0 �thick lines, Eq. �4b�� for quasi-2D problem �

=0.93, 
c=1.53� with different ��: �3� 12, �4� 27 and �5� 56.
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The temperature dependence of the diffusion coefficient
D of macroparticles in 3D systems with various types of
potential and for quasi-2D structures with a screened Cou-
lomb potential was found in �11–13�. There it was shown
that the diffusion coefficient for strongly coupled liquidlike
systems can be presented as

D 	
T��

12��
 + 1��frM
exp�− 3

��

�c
�� , �23�

where �c
� is the crystallization point of the structure under

study ��c
�=102 for the 3D problem and 98 for the 2D case�.

The approximation by Eq. �23� of the numerical results for

the diffusion coefficients is shown in Fig. 7. The accuracy of
this approximation, which for ���50 is just within 5%, de-
creases to within 35% with decreasing parameter �� down to
the value of ��	30 �14–16�. It should be noted that the
relation �23� is in accordance with the empirical “jump”
theory developed for molecular fluids that is based on analo-
gies between the liquid and the solid states of matter �1,4�;
and it allows experimental determination of �� in a strongly
coupled system from measurements of the mean interparticle
distance lp, temperature Tp, and diffusion coefficient D with-
out additional physical assumptions on the character of the
pair potential �18�.

The comparison of the evolution of mass-transfer pro-
cesses in liquidlike 3D and quasi-2D systems with the be-
havior of the analytical DMSD�t�, �Vx�0�Vx�t��, and DGK�t�
functions, obtained for the harmonic oscillator, Eqs. �9�, �13�,
and �14�, demonstrates a good agreement for observation
times �frt�1 /
 �see Figs. 2, 3, and 5�. Thus, in accordance
with the jump theory mentioned, the time of activation �0 of
jumps �the mean time of settled life of the particles� in the
simulated systems hardly depends on temperature and is de-
fined by the oscillation frequency of the grains in the settled
condition: �0	 2 /�s. The simulations also show that the
system of interacting particles can be characterized by con-
stant values of the transport coefficients only for intervals t
��0, in contrast to the system of Brownian particles, for
which the evolution function DMSD�t� �or DGK�t�� tends to D0
for t� �fr

−1.
Measurement of the functions �V�0�V�t��, DMSD�t�, and

DGK�t� at short observation times can be useful for the pas-
sive diagnostics of dust components in nonideal plasmas in
the case of local statistical equilibrium of a dusty subsystem.
As all the mentioned functions are connected by the relation-
ships �15a� and �15b� and unambiguously depend on such
parameters of the grains as their temperature T, characteristic
frequency �c, and the friction coefficient �fr, it is possible to
simultaneously determine all the mentioned parameters by
measuring any one of the functions �V�0�V�t��, DMSD�t�, or
DGK�t� and using a procedure of best fitting of this chosen
function by the corresponding analytical function for the har-
monic oscillator. Additionally, the information on T and �s
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FIG. 5. Functions f�t�fr� �1�, DGK�t�fr� /D0 �2�, and
DMSD�t�fr� /D0 �3� for harmonic oscillator �fine lines� with 
s
=0.19. Numerical results are also shown for 3D problem with .

=0.19 �
c=0.38� and ��=27 for different potentials U: thick lines
U /Us=exp�−2.4r / lp�; diamonds U /Us=exp�−4.8r / lp�+0.05lp /r.
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:
�� ,�� 1.86, � 0.93, � 0.23, and �� ,�� 0.12. The solid lines are
the averaged data of simulation for quasi-2D systems with 

�0.25 �thick line� and 
�0.3 �fine line�.

0.0

0.2

0.4

0.6

0 40 80 120 160�*

D
*

1
2

3
4

FIG. 7. D� vs �� for �1� 3D systems �see Ref. �13��; �2�
quasi-2D systems �averaged�; �3� Eq. �23� for 2D case with �c

�

=98; �4� Eq. �23� for 3D problem with �c
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allows one to estimate the value of the coupling parameter ��

of the system under study from Eqs. �21� and �22�.

V. CONCLUSIONS

The results of numerical investigation of mass-transfer
processes in extensive quasi-two-dimensional and three-
dimensional nonideal dissipative systems are presented. The
particles in these systems interacted via various isotropic pair
potentials, which represented different combinations of
power-law and exponential functions, commonly used for
simulation of repulsion in kinetics of interacting particles.
The calculations were performed in a wide range of param-
eters typical for laboratory dusty plasmas in gas discharges.

The evolution of mass-transfer processes, the velocity au-
tocorrelation functions, and the diffusion constants were
studied. It was found that for the systems under study the
particle temperature, the effective coupling parameter, and
the scaling parameter determine all mentioned characteris-
tics. It was shown that the evolution of the mean-square dis-
placement of particles for short observation times corre-

sponds to lattice oscillations with frequency proportional to
the second derivative of the pair potential of interparticle
interaction. Estimations of the characteristic oscillation fre-
quencies of particles ��c� in 3D bcc structures and in 2D
hexagonal lattices are presented. It is shown that these fre-
quencies are responsible for the time of settled life of par-
ticles ��0	2 /�c� in nonideal liquid systems and define the
behavior of mass-transfer processes at short observation
times �t��0�. The obtained results are in good agreement
with the jump theory.

The presented results can be used for the passive diagnos-
tics of dusty component parameters in plasmas, as well as for
the investigation of fast processes for physically short times
insufficient for the description of these processes using the
equations of macroscopic kinetics.
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